Basic and Programming Seminars on Theory of Transportation (Y2018)
As a start-up, Fukuda Laboratory conducts a basic seminar on the three major basic theories required for traffic analysis in the first 2-3 months of the academic year. In 2018, the seminar aimed to learn the basic theories and application methods (programming skills) for two topics of “travel behavior analysis” and “traffic network analysis”.
Textbooks used:
- “Analysis and Modeling of Traffic Behavior: Theory/Model/Survey/Application” (Ryuichi Kitamura and Takayuki Morikawa [editors])
- “Equilibrium Analysis of Transportation Networks” (JSCE [editor])
Programming languages used:
- Python (some functions in Pythonbiogeme)
- R
【Intoduction】
Chp.1 Data Aggregation and Visualization 01Py.pdf 01R.pdf 01code.zip
Chp.2 Big Data Processing 02Py&R.pdf 02code_R&Py.zip
Spatial data analysis using QGIS 02QGIS.pdf 02QGIS.zip
Chp.3 Regression Analysis and Causal Effect Analysis 03R_Regression Analysis.pdf 03_Causal Effect Analysispdf 03code.zip
Chp.4 Creating documents and slides using LatexLatex, Bibliography Management with BibTeX and Zotero 04LaTex.pdf 04BibTex.pdf 04code.zip
【Travel Behavior Model】
Chp.5 Derivation and Parameter Estimatio of Multinomial Logit (MNL) Model 05Theory.pdf 05R.pdf 05Code_R.zip
Chp.6 Nested Logit Model (NL), Mixed Logit Model (MXL) and Parameter Estimation 06R.pdf 06Pybiogeme.pdf 06code.zip
Chp.7 Metropolitan Area Rail Demand Forecasting 07Railways.pdf Estimation of value of time 07Pybiogeme.pdf 07code.zip
Chp.8 Multi-Agent Simulation 08MATsim.pdf 08RL_R&Py.pdf 08code.zip
【Traffic Network Analysis】
Chp.9 Network Representation and Shortest Path Search 09 Network Representation.pdf 09Shortest path.pdf 09code.zip
Chp.10 Deterministic User Equilibrium Model and Calculation Algorithm 10R.pdf 10Py.pdf 10code.zip
Chp.11 Stochastic User Equilibrium Models and Markov Theory 11Stochastic.pdf Variant Demand UE 11Variant-Demand UE.pdf
Chp.12 Congestion Charging and Network Model 12 First Half.pdf 12 Second Half.pdf
※The pdf files marked “Py”, “Pybiogeme”, “R”, and “MATsim” are materials that include explanations of the program code, while the other materials are explanations of the theory and how to use the analysis software.