基礎理論ゼミ-交通ネットワーク-

Rで実装 最短経路探索法

福田研究室 修士2年 篠原丈実

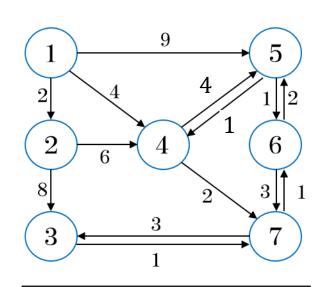
0.目次

- 1.イントロ
- 2.ダイクストラ法(Liuくん担当のため割愛)
- 3.ラベル修正法

最短経路探索法の理論→次回の第8章

1.イントロ

★最短経路探索法・・・利用者均衡配分の計算アルゴリズム


1つの起点からすべての終点までの最短経路を1回の計算で同時に導出

右図のようなネットワークの最短経路 探索を以下のアルゴリズムで行う

✓ダイクストラ法

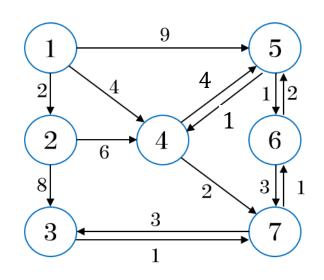
✓ラベル修正法

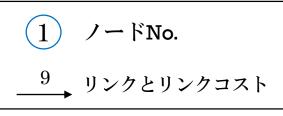
(1) \mathcal{I} F No.

<u>9</u> リンクとリンクコスト

1.イントロ

☆Rでネットワークの作成 右図のようなネットワークをRで作図

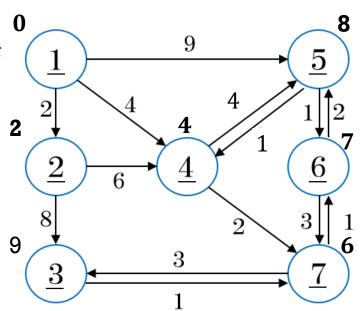

✓データ…"05172.csv" 「隣接行列」の形式


※隣接行列とは...

隣接関係(0 or 1)を行列で表示したもの

1	2	<u> </u>	/0	1	1	$1\setminus$
	3		1	0	1	0
			\ 1	1	0	1 /
	4)		\ ₁	0	1	0/

今回は隣接関係をリンクコストで重み付け = 行列の要素がリンクコストに

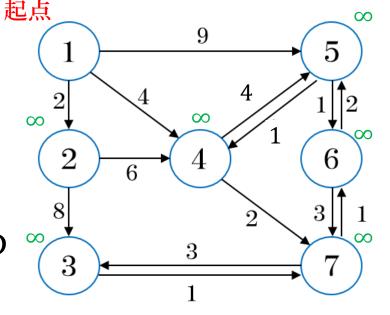

✓ プログラム…"ネットワーク作成.R"

2.ダイクストラ法

☆Rでダイクストラ法

右図のネットワークに関して最短経路を探索

・プログラム・・・"ダイクストラ法.R"



★ラベル修正法

※ダイクストラ法・・・ 最小の交通費用を要するノードを探索

ラベル修正法では・・・

起点ノードとリンクで結ばれる全ての ノードについて費用を更新

はじめに起点をA{ノードリスト}に追加

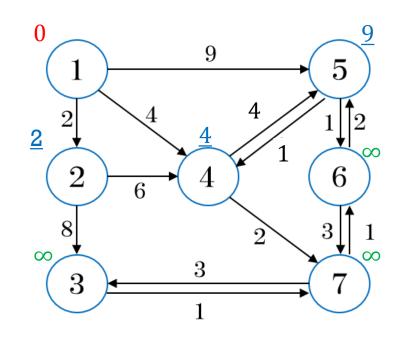
★現時点では・・・<u>A{1}</u>

★ラベル修正法

① 起点(ノード1)における最小費用 $(c_1 = 0)$ とし、集合Aの先頭ノードを取り出し、集合Aから削除

★現時点では・・・· *A* = Ø

② ①のノードiから出るすべてのリンクの終点ノード{m}において


$$c_m > c_i + t_{im}$$

 $**t_{im}$ ・・・ノードi,ノードm間のリンクにおける費用

であれば $c_m = c_i + t_{im}$ に更新し、集合Aに含まれていなければmを集合Aの最後に追加

★現時点では・・・·*A*{2,4,5}

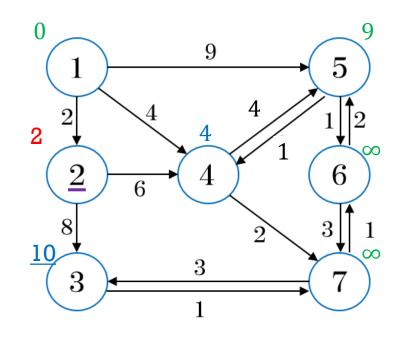
③更新された集合A に関して、①に戻る

赤数字... Aの先頭ノードの最小費用 青数字... 対象の終点ノードの最小費用 (<u>青数字</u>は c_m が更新されたノード =集合Aに追加)

★ラベル修正法

① 集合Aの先頭ノード2を削除

② ①のノードiから出るすべてのリンクの終点ノード{m}において


$$c_m > c_i + t_{im}$$

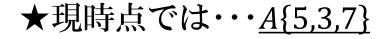
 $%t_{im}$ ・・・ノードi,ノードm間のリンクにおける費用

であれば $c_m = c_i + t_{im}$ に更新し、集合Aに含まれていなければmを集合Aの最後に追加

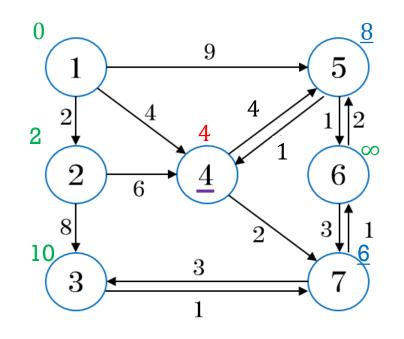
★現時点では・・・·*A*{4,5,3}

③更新された集合Aに関して、①に戻る

★ラベル修正法


① 集合Aの先頭ノード4を削除

② ①のノードiから出るすべてのリンクの終点ノード{m}において


$$c_m > c_i + t_{im}$$

 $**t_{im}$ ・・・ノードi,ノードm間のリンクにおける費用

であれば $c_m = c_i + t_{im}$ に更新し、集合Aに含まれていなければmを集合Aの最後に追加

③更新された集合Aに関して、①に戻る

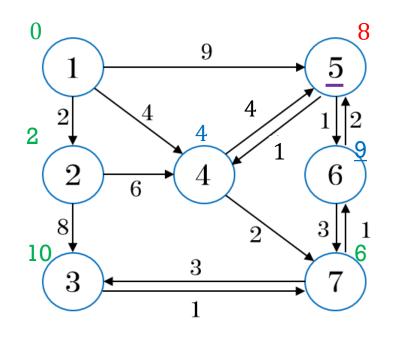
※ポイント

・ノード5の最小費用も更新されたが既にAに属するため追加なし

★ラベル修正法

① 集合Aの先頭ノード5を削除

② ①のノードiから出るすべてのリンクの終点ノード{m}において


$$c_m > c_i + t_{im}$$

 $**t_{im}$ ・・・ノードi,ノードm間のリンクにおける費用

であれば $c_m = c_i + t_{im}$ に更新し、集合Aに含まれていなければmを集合Aの最後に追加

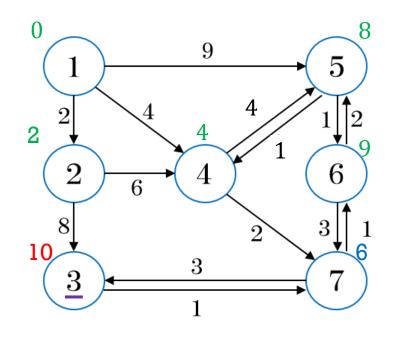
★現時点では・・・·*A*{3,7,6}

③更新された集合Aに関して、①に戻る

★ラベル修正法

① 集合Aの先頭ノード3を削除

② ①のノードiから出るすべてのリンクの終点ノード{m}において


$$c_m > c_i + t_{im}$$

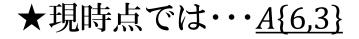
 $**t_{im}$ ・・・ノードi,ノードm間のリンクにおける費用

であれば $c_m = c_i + t_{im}$ に更新し、集合Aに含まれていなければmを集合Aの最後に追加

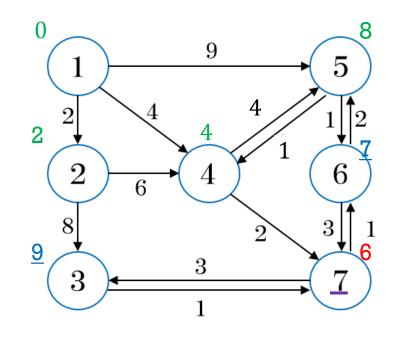
★現時点では・・・· <u>A { 7,6 }</u>

③更新された集合Aに関して、①に戻る

★ラベル修正法


① 集合Aの先頭ノード7を削除

② ①のノードiから出るすべてのリンクの終点ノード{m}において


$$c_m > c_i + t_{im}$$

 $**t_{im}$ ・・・ノードi,ノードm間のリンクにおける費用

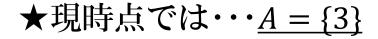
であれば $c_m = c_i + t_{im}$ に更新し、集合Aに含まれていなければmを集合Aの最後に追加

③更新された集合Aに関して、①に戻る

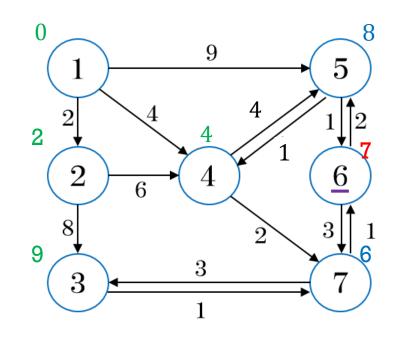
※ポイント

・ラベル修正法では集合Aから一度除去された ノード(今回は3)が再登場する可能性あり

★ラベル修正法


① 集合Aの先頭ノード6を削除

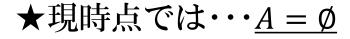
② ①のノードiから出るすべてのリンクの終点ノード{m}において


$$c_m > c_i + t_{im}$$

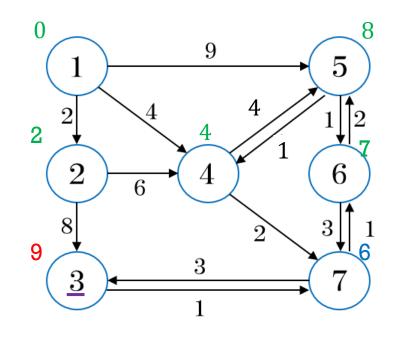
 $%t_{im}$ ・・・・ノードi,ノードm間のリンクにおける費用

④更新された集合A が空集合になれば終了

★ラベル修正法

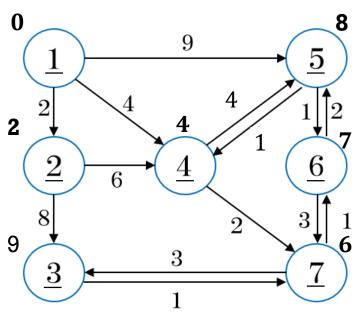

① 集合Aの先頭ノード3を削除

② ①のノードiから出るすべてのリンクの終点ノード{m}において


$$c_m > c_i + t_{im}$$

 $**t_{im}$ ・・・ノードi,ノードm間のリンクにおける費用

であれば $c_m = c_i + t_{im}$ に更新し、集合Aに含まれていなければmを集合Aの最後に追加


④更新された集合Aが空集合になれば終了

☆Rでラベル修正法法

右図のネットワークに関して最短経路を探索

・プログラム・・・"ラベル修正法.R"

